Legume winter survival and spring biomass production in the Northeast: effect of planting date and nurse crops.

July 28, 2023 Arthur Siller, UMass Amherst

Objective

Investigate the relationship between fall planting time and cereal nurse crops on legume cover crop winter survival and spring growth nitrogen contribution across the Northeast through two research trials: 1) on-farm strip trials and 2) randomized trials at research stations. Research station trials will be implemented in the late summer of 2023 and 2024 and strip trials will be done in the fall of 2024.

Rationale

Crimson clover and winter peas do not consistently overwinter in cooler areas of the Northeast while balansa clover is relatively untested. While hairy vetch has a reputation for good winter survival, it has not shown consistent growth habit in mixtures. Winter survival and spring growth in each year are affected by several factors including fall growth and development and protection/competition from nurse crops. The warming climate may allow crimson and balansa clovers and winter peas to be used in place of hairy vetch as a winter annual legume but a better understanding of the factors affecting winter survival are needed.

Hypotheses

Early establishment of legumes will promote winter survival. Both cereal nurse crops will support winter survival. Planting with winter rye will increase winter survival compared to oats but will reduce spring legume biomass production due to competition.

Draft Experimental Design

Randomized Research Station Trial

3 factor RCB (2 years, 2023-2024 and 2024-2025)
4 Reps
Factors:

Planting Date (6 weeks before last frost, 3 weeks before last frost)
Legume Crop - crimson clover (Dixie), balansa clover (Viper), winter pea (Keystone), hairy vetch (Patagonia)
Cereal Nurse Crop - rye (Danko), oats (Reeves), none

Treatment Layout: Split plot design
Main Plot: planting date
Sub Plots: legume x cereal
Experimental Units: 96
Plot Size: at least 100 ft² but dimensions depend on seed drill width. I will send enough seed to do at least 180 ft² per plot.

Randomized	d trial treatn	nents						
seeding	legume	planting date	nurse	legume	cereal	plot	legume	cereal
		-	crop	seeding	seeding	size	seeding	seeding
				rate	rate		rate	rate
treatment				#/A	#/A	sq ft	g/plot	g/plot
1	crimson	6 weeks before	oats	20	30	100	20.8	31.3
	clover	typical frost		-				
2	crimson	6 weeks before	rye	20	30	100	20.8	31.3
	clover	typical frost	,					
3	crimson	6 weeks before	none	20	0	100	20.8	0.0
	clover	typical frost						
4	balansa	6 weeks before	oats	8	30	100	8.3	31.3
	clover	typical frost						
5	balansa	6 weeks before	rye	8	30	100	8.3	31.3
	clover	typical frost	-					
6	balansa	6 weeks before	none	8	0	100	8.3	0.0
	clover	typical frost						
7	hairy	6 weeks before	oats	20	30	100	20.8	31.3
	vetch	typical frost						
8	hairy	6 weeks before	rye	20	30	100	20.8	31.3
	vetch	typical frost						
9	hairy	6 weeks before	none	20	0	100	20.8	0.0
	vetch	typical frost						
10	winter	6 weeks before	oats	40	30	100	41.7	31.3
	pea	typical frost						
11	winter	6 weeks before	rye	40	30	100	41.7	31.3
	pea	typical frost						
12	winter	6 weeks before	none	40	0	100	41.7	0.0
	pea	typical frost						
13	crimson	3 weeks before	oats	20	30	100	20.8	31.3
	clover	typical frost						
14	crimson	3 weeks before	rye	20	30	100	20.8	31.3
	clover	typical frost						
15	crimson	3 weeks before	none	20	0	100	20.8	0.0
	clover	typical frost						
16	balansa	3 weeks before	oats	8	30	100	8.3	31.3
	clover	typical frost						
17	balansa	3 weeks before	rye	8	30	100	8.3	31.3
	clover	typical frost						
18	balansa	3 weeks before	none	8	0	100	8.3	0.0
	clover	typical frost						
19	hairy	3 weeks before	oats	20	30	100	20.8	31.3
	vetch	typical frost						
20	hairy	3 weeks before	rye	20	30	100	20.8	31.3
	vetch	typical frost	-					
21	hairy	3 weeks before	none	20	0	100	20.8	0.0
	vetch	typical frost						
22	winter	3 weeks before	oats	40	30	100	41.7	31.3
	pea	typical frost						
23	winter	3 weeks before	rye	40	30	100	41.7	31.3
	pea	typical frost	-					
24	winter	3 weeks before	none	40	0	100	41.7	0.0
	pea	typical frost						

Data Collection Summary

Fall soil sample at each planting date Field history Fall stand count 3 weeks after planting Biomass sampling in spring at rye boot stage (in seeding date 1) Legume and rye growth stage at spring sampling Separate, dry, and weigh biomass into legume, rye, and weeds Note common weed species at biomass sampling Send biomass sample subset to UMass for nitrogen analysis

Draft Operations Timeline

Late July 2023 Finalize experimental design Source seed to UMass

Early August Mail seed to participating researchers

Randomized Research Station Trial

6 weeks before typical frost

Plant seeding date 1 with grain drill Collect soil sample for seeding date 1 Record field history (preceding crops, herbicide burndown, tillage, other notes) Send 2023-2024 plot layout to *asiller@umass.edu*

3 weeks before typical frost

Plant seeding date 2 with grain drill Collect soil sample for seeding date 2 Make 1/4 m² permanent quadrat and count seedlings in seeding date 1

0 week before typical frost

Make 1/4 m² permanent quadrat and count seedlings in seeding date 2 Mail soil samples to Arthur Siller, 201 Natural Resources Rd Amherst MA 01003

Winter 2023-2024

Upload stand count data Finalize spring sampling protocol

Rye boot stage in seeding date 1

Permanent quadrat harvest in seeding dates 1 and 2 Separate biomass into legume, rye, and weed portions

Rye boot stage in seeding date 1 cont.

Dry and weigh legume, rye, and weed biomass Evaluate legume and rye growth stage Note common weed species

June 2024

Send biomass sample subset for nitrogen analysis to Arthur Siller, 201 Natural Resources Rd Amherst MA 01003 Upload biomass data